

- Mientras hacía ejercicio, Alejandro caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- 2) Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- Rocio pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 6) Un carpintero usó ½ de una caja de clavos mientras trabajaba en una pajarera y pudo terminar ⅓. A este ritmo, ¿cuántas cajas necesitará para terminar toda la pajarera?
- 7) Laura estaba usando un recipiente para llenar una pecera. El contenedor contenía $\frac{1}{2}$ de galón de agua y llenaba $\frac{1}{3}$ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar $\frac{1}{3}$ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 9) Un exprimidor pudo exprimir una pinta de jugo de ½ bolsa de naranjas. Esta cantidad de jugo llenó ¼ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?

1.		

- 2. _____
- 3.
- 4. _____
- 5. _____
- 6. ____
- 7. _____
- 8. _____
- 9. _____
- 10. _____

- Mientras hacía ejercicio, Alejandro caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- 2) Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- Rocio pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Un carpintero usó ½ de una caja de clavos mientras trabajaba en una pajarera y pudo terminar ⅓. A este ritmo, ¿cuántas cajas necesitará para terminar toda la pajarera?
- 7) Laura estaba usando un recipiente para llenar una pecera. El contenedor contenía $\frac{1}{2}$ de galón de agua y llenaba $\frac{1}{3}$ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar $\frac{1}{3}$ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 9) Un exprimidor pudo exprimir una pinta de jugo de ½ bolsa de naranjas. Esta cantidad de jugo llenó ⅓ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?

- $1\frac{1}{2}$ millas
- $1\frac{1}{2}$ bolsas
- $1\frac{1}{2}$ horas
- 4. **3 contenedores**
- $1\frac{1}{2}$ horas
- $1\frac{1}{2}$ cajas
- 7. **3 contenedores**
- 8. **3 botellas**
- $_{9.}$ 1 $\frac{1}{2}$ bolsas
- 10 3 canastas

- Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- María pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- 5) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ½ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 6) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- 7) Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 8) Daniela estaba usando un recipiente para llenar una pecera. El contenedor contenía $\frac{1}{2}$ de galón de agua y llenaba $\frac{1}{3}$ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- 9) Una canasta de limones pesaba ½ de libra y podría hacer ⅓ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar $\frac{1}{3}$ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?

- 1. _____
- 2
- 3.
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8.
- 9. _____
- 10. ____

- Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- María pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ½ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 6) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- 7) Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 8) Daniela estaba usando un recipiente para llenar una pecera. El contenedor contenía $\frac{1}{2}$ de galón de agua y llenaba $\frac{1}{3}$ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- 9) Una canasta de limones pesaba ½ de libra y podría hacer ⅓ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar $\frac{1}{3}$ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?

- $1\frac{1}{2}$ horas
- $_{2}$ $1\frac{1}{2}$ bolsas
- $\frac{1}{2}$ horas
- $_{4.}$ $1\frac{1}{2}$ minutos
- 5. 3 bolsas
- 5. **3 contenedores**
- 7. **3 bolsas**
- 8. **3 contenedores**
- 9. 3 canastas
- 10 3 botellas

- 1) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- 2) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 3) Una lata pequeña de pintura tenia ½ de litro. Eso fue suficiente para llenar ⅓ de un rociador de pintura. ¿Cuántas latas de pintura se necesitarían para llenar completamente el rociador?
- 4) Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- Una botella de perfume con descuento tenia ½ de litro. Eso fue suficiente para llenar ⅓ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 7) Un exprimidor pudo exprimir una pinta de jugo de ½ bolsa de naranjas. Esta cantidad de jugo llenó ⅓ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- 8) Un panadero necesita $\frac{1}{2}$ de una hora para hacer suficientes galletas para llenar $\frac{1}{3}$ de una caja grande. ¿Cuánto tiempo le tomaría llenar toda la caja?
- 9) Carmen estaba usando un recipiente para llenar una pecera. El contenedor contenía ½ de galón de agua y llenaba ⅓ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Natalia pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?

- 1. _____
- 2. _____
- 3.
- 4.
- 5. _____
- 6.
- 7. _____
- 8. _____
- 9. _____
- 10. ____

- 1) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- 2) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 3) Una lata pequeña de pintura tenia ½ de litro. Eso fue suficiente para llenar ⅓ de un rociador de pintura. ¿Cuántas latas de pintura se necesitarían para llenar completamente el rociador?
- 4) Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- 6) Una botella de perfume con descuento tenia ½ de litro. Eso fue suficiente para llenar ⅓ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 7) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- 8) Un panadero necesita $\frac{1}{2}$ de una hora para hacer suficientes galletas para llenar $\frac{1}{3}$ de una caja grande. ¿Cuánto tiempo le tomaría llenar toda la caja?
- 9) Carmen estaba usando un recipiente para llenar una pecera. El contenedor contenía ½ de galón de agua y llenaba ⅓ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Natalia pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?

- 3 papas
- 3 bolsas
- 3. **3 latas**
- $\frac{1}{2}$ horas
- 5. **3 canastas**
- 6. **3 botellas**
- $_{7.}$ $1\frac{1}{2}$ bolsas
- $1\frac{1}{2}$ horas
- 9. **3 contenedores**
- $\frac{1}{10}$ 1 horas

- Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar ¹/₃ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- Mientras hacía ejercicio, Zacarias caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- Una bolsa de mezcla de chocolate que pesara ½ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- Una máquina para fabricar lápices tardó $\frac{1}{2}$ de segundo en producir suficientes lápices para llenar $\frac{1}{3}$ de una caja. A este ritmo, ¿cuánto tiempo le tomaría a la máquina llenar toda la caja?
- Un contenedor de gasolina que contenga $\frac{1}{2}$ de litro podría llenar $\frac{1}{3}$ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una bolsa de semillas de pasto pesaba $\frac{1}{2}$ de gramo. Eso fue suficiente para cubrir ¹/₃ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?

- 1) Una botella de perfume con descuento tenia ½ de litro. Eso fue suficiente para llenar ⅓ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 2) Mientras hacía ejercicio, Zacarias caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 4) Una canasta de limones pesaba ½ de libra y podría hacer ⅓ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- 5) Una máquina para fabricar lápices tardó ½ de segundo en producir suficientes lápices para llenar ⅓ de una caja. A este ritmo, ¿cuánto tiempo le tomaría a la máquina llenar toda la caja?
- 6) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- 7) Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ¼ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?

- 3 botellas
- $_{2}$ $1\frac{1}{2}$ millas
- 3 bolsas
- 4. 3 canastas
- $_{5.}$ $1\frac{1}{2}$ segundos
- 6. **3 contenedores**
- $_{7.}$ 1 $\frac{1}{2}$ horas
- 8. 3 bolsas
- $_{9.}$ 1 $\frac{1}{2}$ bolsas
- $\frac{1}{10}$ 1¹/₂ minutos

- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 2) Una canasta de limones pesaba ½ de libra y podría hacer ⅓ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- Natalia pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Paulina estaba usando un recipiente para llenar una pecera. El contenedor contenía \(\frac{1}{2} \) de galón de agua y llenaba \(\frac{1}{3} \) de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Un carpintero usó ½ de una caja de clavos mientras trabajaba en una pajarera y pudo terminar ⅓. A este ritmo, ¿cuántas cajas necesitará para terminar toda la pajarera?
- Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?
- 7) Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 8) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- 10) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?

1.			

- 2. _____
- 3.
- 4. _____
- 5. _____
- 6.
- 7. _____
- 8. _____
- 9.
- 10. _____

- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 2) Una canasta de limones pesaba ½ de libra y podría hacer ⅓ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- Natalia pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Paulina estaba usando un recipiente para llenar una pecera. El contenedor contenía \(\frac{1}{2} \) de galón de agua y llenaba \(\frac{1}{3} \) de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Un carpintero usó ½ de una caja de clavos mientras trabajaba en una pajarera y pudo terminar ⅓. A este ritmo, ¿cuántas cajas necesitará para terminar toda la pajarera?
- 6) Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?
- 7) Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 8) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?

- 3 bolsas
- 2. **3 canastas**
- $\frac{1}{2}$ horas
- 4. **3 contenedores**
- $1\frac{1}{2}$ cajas
- $1\frac{1}{2}$ horas
- $_{7.}$ 1 $\frac{1}{2}$ horas
- $_{8.}$ 1 $\frac{1}{2}$ bolsas
- $_{9.}$ 1 $\frac{1}{2}$ minutos
- 10 3 bolsas

- Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 2) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- 4) Una máquina para fabricar lápices tardó ½ de segundo en producir suficientes lápices para llenar ⅓ de una caja. A este ritmo, ¿cuánto tiempo le tomaría a la máquina llenar toda la caja?
- Un carpintero usó ½ de una caja de clavos mientras trabajaba en una pajarera y pudo terminar ⅓. A este ritmo, ¿cuántas cajas necesitará para terminar toda la pajarera?
- 6) Alejandra estaba usando un recipiente para llenar una pecera. El contenedor contenía ½ de galón de agua y llenaba ⅓ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- 7) Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 8) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- Un panadero necesita $\frac{1}{2}$ de una hora para hacer suficientes galletas para llenar $\frac{1}{3}$ de una caja grande. ¿Cuánto tiempo le tomaría llenar toda la caja?
- Laura pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?

1.	

- J. _____
- 6.
- 7. _____
- 8. _____
- 9. _____
- 10. _____

- 1) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ½ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 2) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- 4) Una máquina para fabricar lápices tardó ½ de segundo en producir suficientes lápices para llenar ⅓ de una caja. A este ritmo, ¿cuánto tiempo le tomaría a la máquina llenar toda la caja?
- Un carpintero usó ½ de una caja de clavos mientras trabajaba en una pajarera y pudo terminar ⅓. A este ritmo, ¿cuántas cajas necesitará para terminar toda la pajarera?
- 6) Alejandra estaba usando un recipiente para llenar una pecera. El contenedor contenía ½ de galón de agua y llenaba ⅓ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- 7) Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 8) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- Un panadero necesita $\frac{1}{2}$ de una hora para hacer suficientes galletas para llenar $\frac{1}{3}$ de una caja grande. ¿Cuánto tiempo le tomaría llenar toda la caja?
- Laura pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?

- 3 bolsas
- $_{2}$ 1 $\frac{1}{2}$ bolsas
- 3. **3 canastas**
- $_{4.}$ $1\frac{1}{2}$ segundos
- $_{5.}$ $1\frac{1}{2}$ cajas
- 6. 3 contenedores
- $1\frac{1}{2}$ horas
- 8. **3 papas**
- $\frac{1}{2}$ horas
- $\frac{1}{10}$ 1 horas

- 1) Una máquina para fabricar lápices tardó ½ de segundo en producir suficientes lápices para llenar ⅓ de una caja. A este ritmo, ¿cuánto tiempo le tomaría a la máquina llenar toda la caja?
- 2) Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- 3) Una lata pequeña de pintura tenia ½ de litro. Eso fue suficiente para llenar ⅓ de un rociador de pintura. ¿Cuántas latas de pintura se necesitarían para llenar completamente el rociador?
- 4) Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- 7) Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 8) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- Hilda pasó ½ de hora jugando en su teléfono. Eso agotó el ½ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?

1.		

- 2. _____
 - 3. _____
 - 4. _____
 - 5. _____
 - 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10. _____

- 1) Una máquina para fabricar lápices tardó ½ de segundo en producir suficientes lápices para llenar ⅓ de una caja. A este ritmo, ¿cuánto tiempo le tomaría a la máquina llenar toda la caja?
- 2) Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- 3) Una lata pequeña de pintura tenia ½ de litro. Eso fue suficiente para llenar ⅓ de un rociador de pintura. ¿Cuántas latas de pintura se necesitarían para llenar completamente el rociador?
- 4) Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?
- 7) Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 8) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- Hilda pasó ½ de hora jugando en su teléfono. Eso agotó el ½ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?

- $1^{1/2}$ segundos
- $1\frac{1}{2}$ bolsas
- 3. **3 latas**
- $_{4.}$ $1\frac{1}{2}$ minutos
- $1\frac{1}{2}$ horas
- 6. 3 canastas
- $_{7.}$ 1 $\frac{1}{2}$ horas
- 8. **3 papas**
- 9. **3 bolsas**
- $\frac{1}{10}$ 1 horas

- Un panadero necesita $\frac{1}{2}$ de una hora para hacer suficientes galletas para llenar $\frac{1}{3}$ de una caja grande. ¿Cuánto tiempo le tomaría llenar toda la caja?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Flor pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 6) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- 7) Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- 8) Mientras hacía ejercicio, Cesar caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- 9) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 10) Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?

- 1. _____
- 2.
- 3.
- 4.
- 5. _____
- 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10. _____

- Un panadero necesita $\frac{1}{2}$ de una hora para hacer suficientes galletas para llenar $\frac{1}{3}$ de una caja grande. ¿Cuánto tiempo le tomaría llenar toda la caja?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Flor pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- 4) Una papa vieja emite ½ de un voltio de electricidad, que es ⅓ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?
- Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 6) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- 7) Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- Mientras hacía ejercicio, Cesar caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- 9) Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ⅓ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?

- $1\frac{1}{2}$ horas
- $1\frac{1}{2}$ horas
- $1\frac{1}{2}$ horas
- 3 papas
- 5. **3 bolsas**
- 6. **3 contenedores**
- 7. $1\frac{1}{2}$ minutos
- $1\frac{1}{2}$ millas
- 9 3 bolsas
- $_{10.}$ 1 $\frac{1}{2}$ horas

- 1) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?
- 4) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- Mientras hacía ejercicio, Humberto caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- 6) Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar $\frac{1}{3}$ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 7) Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- 8) Elena estaba usando un recipiente para llenar una pecera. El contenedor contenía ½ de galón de agua y llenaba ⅓ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 10) Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?

1.			

- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10. ____

- 1) Un exprimidor pudo exprimir una pinta de jugo de $\frac{1}{2}$ bolsa de naranjas. Esta cantidad de jugo llenó $\frac{1}{3}$ de una jarra. A este ritmo, ¿cuántas bolsas se necesitan para llenar toda la jarra?
- Una manguera de agua había llenado $\frac{1}{2}$ de una piscina después del $\frac{1}{3}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?
- 4) Un contenedor de gasolina que contenga ½ de litro podría llenar ⅓ del tanque de gasolina de una motocicleta. ¿Cuántos contenedores necesitarías para llenar el tanque de gasolina por completo?
- Mientras hacía ejercicio, Humberto caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- Una botella de perfume con descuento tenia ½ de litro. Eso fue suficiente para llenar ⅓ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- 7) Un chef usó $\frac{1}{2}$ de una bolsa de papas para hacer $\frac{1}{3}$ de un galón de estofado. Si quisiera hacer un galón completo de estofado, ¿cuántas bolsas de papas necesitaría?
- 8) Elena estaba usando un recipiente para llenar una pecera. El contenedor contenía ½ de galón de agua y llenaba ⅓ de la pecera. A este ritmo, ¿cuántos contenedores se necesitarán para llenar la pecera?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- 10) Una canasta de limones pesaba $\frac{1}{2}$ de libra y podría hacer $\frac{1}{3}$ de taza de limonada llena. ¿Cuántas canastas de limones necesitarías para llenar toda la taza?

- $1^{1/2}$ bolsas
- $1\frac{1}{2}$ horas
- $1\frac{1}{2}$ horas
- 4. **3 contenedores**
- $_{5.}$ $1\frac{1}{2}$ millas
- 6. **3 botellas**
- $_{7.}$ $1\frac{1}{2}$ bolsas
- 8. 3 contenedores
- $\frac{1}{2}$ horas
- 10 3 canastas

- 1) Una lata pequeña de pintura tenia ½ de litro. Eso fue suficiente para llenar ⅓ de un rociador de pintura. ¿Cuántas latas de pintura se necesitarían para llenar completamente el rociador?
- 2) Mientras hacía ejercicio, Leonardo caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ½ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 4) Una botella de perfume con descuento tenia $\frac{1}{2}$ de litro. Eso fue suficiente para llenar $\frac{1}{3}$ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- 6) Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 7) Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?
- 8) Hilda pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una papa vieja emite $\frac{1}{2}$ de un voltio de electricidad, que es $\frac{1}{3}$ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?

- 1. _____
- 2.
- 3. _____
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10. _____

- 1) Una lata pequeña de pintura tenia ½ de litro. Eso fue suficiente para llenar ⅓ de un rociador de pintura. ¿Cuántas latas de pintura se necesitarían para llenar completamente el rociador?
- 2) Mientras hacía ejercicio, Leonardo caminó $\frac{1}{2}$ de una milla en $\frac{1}{3}$ de hora. A este ritmo, ¿qué distancia habrá recorrido después de una hora?
- Una bolsa de semillas de pasto pesaba ½ de gramo. Eso fue suficiente para cubrir ½ de un césped con semillas. ¿Cuántas bolsas se necesitarían para cubrir completamente un césped?
- 4) Una botella de perfume con descuento tenia ½ de litro. Eso fue suficiente para llenar ⅓ de una jarra. ¿Cuántas botellas de perfume necesitarías para llenar toda la jarra?
- Un caracol que iba a toda velocidad tardaba $\frac{1}{2}$ de un minuto en moverse $\frac{1}{3}$ de un centímetro. A este ritmo, ¿cuánto tardaría el caracol en viajar un centímetro?
- 6) Una bolsa de mezcla de chocolate que pesara $\frac{1}{2}$ de kilogramo podría producir suficientes brownies para alimentar $\frac{1}{3}$ de los estudiantes en la escuela. ¿Cuántas bolsas se necesitarían para alimentar a todos los estudiantes?
- 7) Un restaurante tardó $\frac{1}{2}$ de una hora en utilizar $\frac{1}{3}$ de un paquete de servilletas. A este ritmo, ¿cuántas horas se necesitarían para utilizar todo el paquete?
- 8) Hilda pasó $\frac{1}{2}$ de hora jugando en su teléfono. Eso agotó el $\frac{1}{3}$ de su batería. ¿Cuánto tiempo tendría que jugar en su teléfono para usar toda la batería?
- Una manguera de agua había llenado $\frac{1}{3}$ de una piscina después del $\frac{1}{2}$ de hora. A este ritmo, ¿cuántas horas se necesitarían para llenar la piscina?
- Una papa vieja emite $\frac{1}{2}$ de un voltio de electricidad, que es $\frac{1}{3}$ la cantidad de energía necesaria para una bombilla pequeña. ¿Cuántas papas necesitarías para encender la bombilla?

Respuestas

- 3 latas
- $1\frac{1}{2}$ millas
- 3 bolsas
- 4. **3 botellas**
- $1\frac{1}{2}$ minutos
- 6. 3 bolsas
- $_{7.}$ 1 $\frac{1}{2}$ horas
- $_{8.}$ 1 $\frac{1}{2}$ horas
- $\frac{1}{2}$ horas
- 10. **3 papas**

10